Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
Sci Rep ; 14(1): 7637, 2024 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-38561394

RESUMEN

Rapid placement of electric vehicle charging stations (EVCSs) is essential for the transportation industry in response to the growing electric vehicle (EV) fleet. The widespread usage of EVs is an essential strategy for reducing greenhouse gas emissions from traditional vehicles. The focus of this study is the challenge of smoothly integrating Plug-in EV Charging Stations (PEVCS) into distribution networks, especially when distributed photovoltaic (PV) systems are involved. A hybrid Genetic Algorithm and Simulated Annealing method (GA-SAA) are used in the research to strategically find the optimal locations for PEVCS in order to overcome this integration difficulty. This paper investigates PV system situations, presenting the problem as a multicriteria task with two primary objectives: reducing power losses and maintaining acceptable voltage levels. By optimizing the placement of EVCS and balancing their integration with distributed generation, this approach enhances the sustainability and reliability of distribution networks.

2.
Sci Rep ; 14(1): 7867, 2024 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-38570573

RESUMEN

This paper presents a comprehensive study on the implementation and analysis of PID controllers in an automated voltage regulator (AVR) system. A novel tuning technique, Virtual Time response-based iterative gain evaluation and re-design (V-Tiger), is introduced to iteratively adjust PID gains for optimal control performance. The study begins with the development of a mathematical model for the AVR system and initialization of PID gains using the Pessen Integral Rule. Virtual time-response analysis is then conducted to evaluate system performance, followed by iterative gain adjustments using Particle Swarm Optimization (PSO) within the V-Tiger framework. MATLAB simulations are employed to implement various controllers, including the V-Tiger PID controller, and their performance is compared in terms of transient response, stability, and control signal generation. Robustness analysis is conducted to assess the system's stability under uncertainties, and worst-case gain analysis is performed to quantify robustness. The transient response of the AVR with the proposed PID controller is compared with other heuristic controllers such as the Flower Pollination Algorithm, Teaching-Learning-based Optimization, Pessen Integral Rule, and Zeigler-Nichols methods. By measuring the peak closed-loop gain of the AVR with the controller and adding uncertainty to the AVR's field exciter and amplifier, the robustness of proposed controller is determined. Plotting the performance degradation curves yields robust stability margins and the accompanying maximum uncertainty that the AVR can withstand without compromising its stability or performance. Based on the degradation curves, robust stability margin of the V-Tiger PID controller is estimated at 3.5. The worst-case peak gains are also estimated using the performance degradation curves. Future research directions include exploring novel optimization techniques for further enhancing control performance in various industrial applications.

3.
Sci Rep ; 14(1): 8591, 2024 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-38615052

RESUMEN

The impacts of climate change, combined with the depletion of fossil fuel reserves, are forcing human civilizations to reconsider the design of electricity generation systems to gradually and extensively incorporate renewable energies. This study aims to investigate the technical and economic aspects of replacing all heavy fuel oil (HFO) and light fuel oil (LFO) thermal power plants connected to the electricity grid in southern Cameroon. The proposed renewable energy system consists of a solar photovoltaic (PV) field, a pumped hydroelectric energy storage (PHES) system, and an ultra-capacitor energy storage system. The economic and technical performance of the new renewable energy system was assessed using metrics such as total annualized project cost (TAC), loss of load probability (LOLP), and loss of power supply probability (LPSP). The Multi-Objective Bonobo Optimizer (MOBO) was used to both size the components of the new renewable energy system and choose the best location for the solar PV array. The results achieved using MOBO were superior to those obtained from other known optimization techniques. Using metaheuristics for renewable energy system sizing necessitated the creation of mathematical models of renewable energy system components and techno-economic decision criteria under MATLAB software. Based on the results for the deficit rate (LPSP) of zero, the installation of the photovoltaic field in Bafoussam had the lowest TAC of around 52.78 × 106€ when compared to the results for Yaoundé, Bamenda, Douala, and Limbe. Finally, the project profitability analysis determined that the project is financially viable when the energy produced by the renewable energy systems is sold at an average price of 0.12 €/kWh.

4.
Sci Rep ; 14(1): 9271, 2024 Apr 23.
Artículo en Inglés | MEDLINE | ID: mdl-38649709

RESUMEN

The lifetime of power transformers is closely related to the insulating oil performance. This latter can degrade according to overheating, electric arcs, low or high energy discharges, etc. Such degradation can lead to transformer failures or breakdowns. Early detection of these problems is one of the most important steps to avoid such failures. More efficient diagnostic systems, such as artificial intelligence techniques, are recommended to overcome the limitations of the classical methods. This work deals with diagnosing the power transformer insulating oil by analysis of dissolved gases using new techniques. For this, we have proposed intelligent techniques based on Multilayer artificial neural networks (ANN). Thus, a multi-layer ANN-based model for fault detection is presented. To improve its classification rate, this one was optimized by a meta-heuristic technique as the particle swarm optimization (PSO) technique. Optimized ANNs have never been used in transformer insulating oil diagnostics so far. The robustness and effectiveness of the proposed model is demonstrated, and high accuracy is obtained.

5.
Sci Rep ; 14(1): 7996, 2024 Apr 05.
Artículo en Inglés | MEDLINE | ID: mdl-38580735

RESUMEN

This article offers a PV-PEMFC-batteries energy management strategy (EMS) that aims to meet the following goals: keep the DC link steady at the standard value, increase battery lifespan, and meet power demand. The suggested multi-source renewable system (MSRS) is made to meet load demand while using extra power to fill batteries. The major energy source for the MSRS is photovoltaic, and fuzzy logic MPPT is used to guarantee that the PV operates at optimal efficiency under a variety of irradiation conditions. The suggested state machine control consists of 15 steps. It prioritizes the proton exchange membrane fuel cell (PEMFC) as a secondary source for charging the battery when power is abundant and the state of charge (SOC) is low. The MSRS is made feasible by meticulously coordinating control and power management. The MSRS is made achievable by carefully orchestrated control and electricity management. The efficacy of the proposed system was evaluated under different solar irradiance and load conditions. The study demonstrates that implementing the SMC led to an average improvement of 2.3% in the overall efficiency of the system when compared to conventional control techniques. The maximum efficiency was observed when the system was operating under high load conditions, specifically when the state of charge (SOC) was greater than the maximum state of charge (SOCmax). The average efficiency achieved under these conditions was 97.2%. In addition, the MSRS successfully maintained power supply to the load for long durations, achieving an average sustained power of 96.5% over a period of 7.5 s. The validity of the modeling and management techniques mentioned in this study are confirmed by simulation results utilizing the MATLAB/Simulink (version: 2016, link: https://in.mathworks.com/products/simulink.html ) software tools. These findings show that the proposed SMC is effective at managing energy resources in MSRS, resulting in improved system efficiency and reliability.

6.
Sci Rep ; 14(1): 8205, 2024 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-38589473

RESUMEN

This paper proposes an innovative approach to improve the performance of grid-connected photovoltaic (PV) systems operating in environments with variable atmospheric conditions. The dynamic nature of atmospheric parameters poses challenges for traditional control methods, leading to reduced PV system efficiency and reliability. To address this issue, we introduce a novel integration of fuzzy logic and sliding mode control methodologies. Fuzzy logic enables the PV system to effectively handle imprecise and uncertain atmospheric data, allowing for decision-making based on qualitative inputs and expert knowledge. Sliding mode control, known for its robustness against disturbances and uncertainties, ensures stability and responsiveness under varying atmospheric conditions. Through the integration of these methodologies, our proposed approach offers a comprehensive solution to the complexities posed by real-world atmospheric dynamics. We anticipate applications in grid-connected PV systems across various geographical locations and climates. By harnessing the synergistic benefits of fuzzy logic and sliding mode control, this approach promises to significantly enhance the performance and reliability of grid-connected PV systems in the presence of variable atmospheric conditions. On the grid side, both PSO (Particle Swarm Optimization) and GA (Genetic Algorithm) algorithms were employed to tune the current controller of the PI (Proportional-Integral) current controller (inverter control). Simulation results, conducted using MATLAB Simulink, demonstrate the effectiveness of the proposed hybrid MPPT technique in optimizing the performance of the PV system. The technique exhibits superior tracking efficiency, achieving a convergence time of 0.06 s and an efficiency of 99.86%, and less oscillation than the classical methods. The comparison with other MPPT techniques highlights the advantages of the proposed approach, including higher tracking efficiency and faster response times. The simulation outcomes are analyzed and demonstrate the effectiveness of the proposed control strategies on both sides (the PV array and the grid side). Both PSO and GA offer effective methods for tuning the parameters of a PI current controller. According to considered IEEE standards for low-voltage networks, the total current harmonic distortion values (THD) obtained are considerably high (8.33% and 10.63%, using the PSO and GA algorithms, respectively). Comparative analyses with traditional MPPT methods demonstrate the superior performance of the hybrid approach in terms of tracking efficiency, stability, and rapid response to dynamic changes.

8.
Sci Rep ; 14(1): 5661, 2024 Mar 07.
Artículo en Inglés | MEDLINE | ID: mdl-38454016

RESUMEN

This paper presents a cutting-edge Sustainable Power Management System for Light Electric Vehicles (LEVs) using a Hybrid Energy Storage Solution (HESS) integrated with Machine Learning (ML)-enhanced control. The system's central feature is its ability to harness renewable energy sources, such as Photovoltaic (PV) panels and supercapacitors, which overcome traditional battery-dependent constraints. The proposed control algorithm orchestrates power sharing among the battery, supercapacitor, and PV sources, optimizing the utilization of available renewable energy and ensuring stringent voltage regulation of the DC bus. Notably, the ML-based control ensures precise torque and speed regulation, resulting in significantly reduced torque ripple and transient response times. In practical terms, the system maintains the DC bus voltage within a mere 2.7% deviation from the nominal value under various operating conditions, a substantial improvement over existing systems. Furthermore, the supercapacitor excels at managing rapid variations in load power, while the battery adjusts smoothly to meet the demands. Simulation results confirm the system's robust performance. The HESS effectively maintains voltage stability, even under the most challenging conditions. Additionally, its torque response is exceptionally robust, with negligible steady-state torque ripple and fast transient response times. The system also handles speed reversal commands efficiently, a vital feature for real-world applications. By showcasing these capabilities, the paper lays the groundwork for a more sustainable and efficient future for LEVs, suggesting pathways for scalable and advanced electric mobility solutions.

9.
Sci Rep ; 14(1): 6653, 2024 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-38509162

RESUMEN

Integration renewable energy sources into current power generation systems necessitates accurate forecasting to optimize and preserve supply-demand restrictions in the electrical grids. Due to the highly random nature of environmental conditions, accurate prediction of PV power has limitations, particularly on long and short periods. Thus, this research provides a new hybrid model for forecasting short PV power based on the fusing of multi-frequency information of different decomposition techniques that will allow a forecaster to provide reliable forecasts. We evaluate and provide insights into the performance of five multi-scale decomposition algorithms combined with a deep convolution neural network (CNN). Additionally, we compare the suggested combination approach's performance to that of existing forecast models. An exhaustive assessment is carried out using three grid-connected PV power plants in Algeria with a total installed capacity of 73.1 MW. The developed fusing strategy displayed an outstanding forecasting performance. The comparative analysis of the proposed combination method with the stand-alone forecast model and other hybridization techniques proves its superiority in terms of forecasting precision, with an RMSE varying in the range of [0.454-1.54] for the three studied PV stations.

10.
Sci Rep ; 14(1): 6827, 2024 Mar 21.
Artículo en Inglés | MEDLINE | ID: mdl-38514832

RESUMEN

Recently, the integration of renewable energy sources, specifically photovoltaic (PV) systems, into power networks has grown in significance for sustainable energy generation. Researchers have investigated different control algorithms for maximum power point tracking (MPPT) to enhance the efficiency of PV systems. This article presents an innovative method to address the problem of maximum power point tracking in photovoltaic systems amidst swiftly changing weather conditions. MPPT techniques supply maximum power to the load during irradiance fluctuations and ambient temperatures. A novel optimal model reference adaptive controller is developed and designed based on the MIT rule to seek global maximum power without ripples rapidly. The suggested controller is also optimized through two popular meta-heuristic algorithms: The genetic algorithm (GA) and the whale optimization algorithm (WOA). These meta-heuristic approaches have been exploited to overcome the difficulty of selecting the adaptation gain of the MRAC controller. The reference voltage for MPPT is generated in the study through an adaptive neuro-fuzzy inference system. The suggested controller's performance is tested via MATLAB/Simulink software under varying temperature and radiation circumstances. Simulation is carried out using a Soltech 1sth-215-p module coupled to a boost converter, which powers a resistive load. Furthermore, to emphasize the recommended algorithm's performance, a comparative study was done between the optimal MRAC using GA and WOA and the conventional incremental conductance (INC) method.

11.
Sci Rep ; 14(1): 6448, 2024 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-38499574

RESUMEN

High performance and comfort are key features recommended in hybrid electric vehicle (HEV) design. In this paper, a new coordination strategy is proposed to solve the issue of undesired torque jerks and large power ripples noticed respectively during drive mode commutations and power sources switching. The proposed coordinated switching strategy uses stair-based transition function to perform drive mode commutations and power source switching's within defined transition periods fitting the transient dynamics of power sources and traction machines. The proposed technique is applied on a battery/ supercapacitor electric vehicle whose traction is ensured by two permanent magnet synchronous machines controlled using direct torque control and linked to HEV front and rear wheels. Simulation results highlight that the proposed coordinated switching strategy has a noteworthy positive impact on enhancing HEV transient performance as DC bus fluctuations were reduced to a narrow band of 6 V and transient torque ripples were almost suppressed.

12.
Sci Rep ; 14(1): 3572, 2024 Feb 12.
Artículo en Inglés | MEDLINE | ID: mdl-38347046

RESUMEN

Promoting renewable energy sources, particularly in the solar industry, has the potential to address the energy shortfall in Central Africa. Nevertheless, a difficulty occurs due to the erratic characteristics of solar irradiance data, which is influenced by climatic fluctuations and challenging to regulate. The current investigation focuses on predicting solar irradiance on an inclined surface, taking into consideration the impact of climatic variables such as temperature, wind speed, humidity, and air pressure. The used methodology for this objective is Artificial Neural Network (ANN), and the inquiry is carried out in the metropolitan region of Douala. The data collection device used in this research is the meteorological station located at the IUT of Douala. This station was built as a component of the Douala sustainable city effort, in partnership with the CUD and the IRD. Data was collected at 30-min intervals for a duration of around 2 years, namely from January 17, 2019, to October 30, 2020. The aforementioned data has been saved in a database that underwent pre-processing in Excel and later employed MATLAB for the creation of the artificial neural network model. 80% of the available data was utilized for training the network, 15% was allotted for validation, and the remaining 5% was used for testing. Different combinations of input data were evaluated to ascertain their individual degrees of accuracy. The logistic Sigmoid function, with 50 hidden layer neurons, yielded a correlation coefficient of 98.883% between the observed and estimated sun irradiation. This function is suggested for evaluating the intensities of solar radiation at the place being researched and at other sites that have similar climatic conditions.

13.
Sci Rep ; 14(1): 4899, 2024 Feb 28.
Artículo en Inglés | MEDLINE | ID: mdl-38418602

RESUMEN

Substantial attention has been drawn over the past few years by high step-up dc-dc converters owing to their applications in a wide range. Apart from renewable energy applications, high voltage/ high pulse converters are efficiently used in water treatment applications. The converter suggested a combination of Quadratic and SEPIC converters with a diode-capacitor cell. This topology generates high-voltage repetitive pulses with a single semiconductor switch and reduced component count. The stress across the components is less than the high-gain converters reported in the literature. The topology has an extendable feature by increasing the number of diode-capacitor cells without affecting the stress. The superiority of the high pulse generating topology is validated with a similar converter in the literature. This paper discusses the nL5 simulator results for the proposed rated topology required for water treatment. A scaled-down 50 W prototype is tested for various input voltages to generate high voltage pulse, and the analytical study is validated.

14.
Sci Rep ; 14(1): 3091, 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38326491

RESUMEN

This study presents the Enhanced Cheetah Optimizer Algorithm (ECOA) designed to tackle the intricate real-world challenges of dynamic economic dispatch (DED). These complexities encompass demand-side management (DSM), integration of non-conventional energy sources, and the utilization of pumped-storage hydroelectric units. Acknowledging the variability of solar and wind energy sources and the existence of a pumped-storage hydroelectric system, this study integrates a solar-wind-thermal energy system. The DSM program not only enhances power grid security but also lowers operational costs. The research addresses the DED problem with and without DSM implementation to analyze its impact. Demonstrating effectiveness on two test systems, the suggested method's efficacy is showcased. The recommended method's simulation results have been compared to those obtained using Cheetah Optimizer Algorithm (COA) and Grey Wolf Optimizer. The optimization results indicate that, for both the 10-unit and 20-unit systems, the proposed ECOA algorithm achieves savings of 0.24% and 0.43%, respectively, in operation costs when Dynamic Economic Dispatch is conducted with Demand-Side Management (DSM). This underscores the advantageous capability of DSM in minimizing costs and enhancing the economic efficiency of the power systems. Our ECOA has greater adaptability and reliability, making it a promising solution for addressing multi-objective energy management difficulties within microgrids, particularly when demand response mechanisms are incorporated. Furthermore, the suggested ECOA has the ability to elucidate the multi-objective dynamic optimal power flow problem in IEEE standard test systems, particularly when electric vehicles and renewable energy sources are integrated.

15.
Sci Rep ; 14(1): 3261, 2024 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-38331946

RESUMEN

This paper proposes an innovative approach for improving the charging efficiency of electric vehicles (EVs) by combining photovoltaic (PV) systems with AC-DC Power Factor Correction (PFC). The proposed approach employs bi-directional power flow management within the PFC system, allowing for enhanced resource utilization and EV battery capacity under a variety of environmental circumstances. A modified Lyapunov-based robust model reference adaptive controller (M-LRMRAC) is developed to provide real-time Maximum Power Point Tracking (MPPT) for the PV array. By quickly recording the MPP, this controller skilfully adjusts to shifting radiation and temperature dynamics. A noteworthy accomplishment is that the M-LRMRAC outperforms traditional Perturb and Observe (P&O) techniques by achieving quick MPP convergence (0.54 s). Additionally, the benefits of this integrated system go beyond effective MPPT. The method achieves operating at unity power factor and reduces total harmonic distortion, which results in improved power quality when charging EV Batteries (EVB). The entire solution provided by this multifaceted architecture improves the quality of electricity delivered to EV batteries while also increasing energy efficiency. This research helps to the evolution of sustainable and dependable EV charging infrastructure by solving difficulties and optimising performance. The combination of PV systems with AC-DC PFC, aided by the M-LRMRAC technology, presents a viable route for attaining efficient, clean, and high-quality EV charging, hence supporting the shift to a greener and more sustainable transportation landscape.

16.
Sci Rep ; 14(1): 3334, 2024 Feb 09.
Artículo en Inglés | MEDLINE | ID: mdl-38336800

RESUMEN

As the significance and complexity of solar panel performance, particularly at their maximum power point (MPP), continue to grow, there is a demand for improved monitoring systems. The presence of variable weather conditions in Maroua, including potential partial shadowing caused by cloud cover or urban buildings, poses challenges to the efficiency of solar systems. This study introduces a new approach to tracking the Global Maximum Power Point (GMPP) in photovoltaic systems within the context of solar research conducted in Cameroon. The system utilizes Genetic Algorithm (GA) and Backstepping Controller (BSC) methodologies. The Backstepping Controller (BSC) dynamically adjusts the duty cycle of the Single Ended Primary Inductor Converter (SEPIC) to align with the reference voltage of the Genetic Algorithm (GA) in Maroua's dynamic environment. This environment, characterized by intermittent sunlight and the impact of local factors and urban shadowing, affects the production of energy. The Genetic Algorithm is employed to enhance the efficiency of BSC gains in Maroua's solar environment. This optimization technique expedites the tracking process and minimizes oscillations in the GMPP. The adaptability of the learning algorithm to specific conditions improves energy generation, even in the challenging environment of Maroua. This study introduces a novel approach to enhance the efficiency of photovoltaic systems in Maroua, Cameroon, by tailoring them to the specific solar dynamics of the region. In terms of performance, our approach surpasses the INC-BSC, P&O-BSC, GA-BSC, and PSO-BSC methodologies. In practice, the stabilization period following shadowing typically requires fewer than three iterations. Additionally, our Maximum Power Point Tracking (MPPT) technology is based on the Global Maximum Power Point (GMPP) methodology, contrasting with alternative technologies that prioritize the Local Maximum Power Point (LMPP). This differentiation is particularly relevant in areas with partial shading, such as Maroua, where the use of LMPP-based technologies can result in power losses. The proposed method demonstrates significant performance by achieving a minimum 33% reduction in power losses.

17.
Sci Rep ; 14(1): 3443, 2024 Feb 11.
Artículo en Inglés | MEDLINE | ID: mdl-38341467

RESUMEN

Electric power utilities must ensure a consistent and undisturbed supply of power, with the voltage levels adhering to specified ranges. Any deviation from these supply specifications can lead to malfunctions in equipment. Monitoring the quality of supplied power is crucial to minimize the impact of fluctuations in voltage. Variations in voltage or current from their ideal values are referred to as "power quality (PQ) disturbances," highlighting the need for vigilant monitoring and management. Signal processing methods are widely used for power system applications which include understanding of voltage disturbance signals and used for retrieval of signal information from the signals Different signal processing methods are used for extracting information about a signal. The method of Fourier analysis involves application of Fourier transform giving frequency information. The method of Short-Time Fourier analysis involves application of Short-Time Fourier transform (STFT) giving time-frequency information. The method of continuous wavelet analysis involves application of Continuous Wavelet transform (CWT) giving signal information in terms of scale and time where frequency is inversely related to scale. The method of discrete wavelet analysis involves application of Discrete Wavelet transform (DWT) giving signal information in terms of approximations and details where approximations and details are low and high frequency representation of original signal. In this paper, an attempt is made to perceive power quality disturbances in MATLAB using Fourier, Short-Time Fourier, Continuous Wavelet and Discrete Wavelet Transforms. Proper understanding of the signals can be possible by transforming the signals into different domains. An emphasis on application of signal processing techniques can be laid for power quality studies. The paper compares the results of each transform using MATLAB-based visualizations. The discussion covers the advantages and disadvantages of each technique, providing valuable insights into the interpretation of power quality disturbances. As the paper delves into the complexities of each method, it takes the reader on a journey of signal processing complexities, culminating in a nuanced understanding of power quality disturbances and their representations across various domains. The outcomes of this research, elucidated through energy values, 3D plots, and comparative analyses, contribute to a comprehensive understanding of power quality disturbances. The findings not only traverse theoretical domains but also find practical utility in real-world scenarios.

18.
Sci Rep ; 14(1): 4646, 2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38409466

RESUMEN

Over the past years, the use of renewable energy sources (RESs) has grown significantly as a means of providing clean energy to counteract the devastating effects of climate change. Reducing energy costs and pollution have been the primary causes of the rise in solar photovoltaic (PV) system integrations with the grid in recent years. A load that is locally connected to a GCPV requires both active and reactive power control. In order to control both active and reactive power, MAs and advanced controllers are essential. Researchers have used one of the recently developed MAs, known as the CAOA, which is based on mathematical arithmetic operators to tackle a few real-world optimization problems. Some disadvantages of CAOA include its natural tendency to converge to a local optimum and its limited capacity for exploration. By merging the PSO and CAOA methodologies, this article suggests the IAOA. To show how applicable IAOA is, its performance has been evaluated using four benchmark functions. The implementation of an IAOA-based ST-SMC for active and reactive power control is addressed in this article, which offers an innovative approach of research. In comparison to PSO-based ST-SMC and CAOA-based ST-SMC, the proposed IAOA-based ST-SMC appears to be superior, with settling time for active and reactive power control at a minimum of 0.01012 s and 0.5075 s. A real-time OPAL-RT 4510 simulator is used to validate the performance results of a 40 kW GCPV system after it has been investigated in the MATLAB environment.

19.
BJU Int ; 133 Suppl 3: 33-38, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-37409820

RESUMEN

OBJECTIVES: To evaluate the New Zealand clinical experience with the adjustable transobturator male system (ATOMS), a novel continence device in the management of all degrees of stress urinary incontinence (SUI), focusing on efficacy and safety outcomes. PATIENTS AND METHODS: A retrospective review of all ATOMS devices placed between May 2015 and November 2020 was conducted. Severity of SUI was assessed (pad usage) before and after surgery. SUI was defined as mild (1-<3 pads/day), moderate (≥3-5 pads/day) or severe (>5 pads/day). The primary outcome measures considered were the overall success rate (improvement in pad use) and the dry rate (with dry defined as either no or 1 safety pad/day). The number of outpatient adjustments and total filling volumes were also documented in each case. Additionally, we documented incidence and severity of device complications and an analysis of treatment failures. RESULTS: A total of 140 patients were reviewed, with the most common indication for ATOMS placement being SUI after radical prostatectomy (82.8%). Of the patients included, 53 (37.9%) had previous radiotherapy, with 26 (18.6%) patients having had a previous continence procedure performed. No intraoperative complications were noted. The median preoperative pad usage was 4 pads/day. After a median follow-up of 11 months, median postoperative pad usage reduced to 1 pad/day. In our cohort, 116 patients (82.9%) reported an improvement in their pad usage and were considered successful with 107 (76.4%) patients reporting themselves to be dry. Complications within the first 90-days after surgery occurred in 20 (14.3%) of patients. CONCLUSION: Treatment of SUI with the ATOMS is safe and effective. The option of long-term, minimally invasive adjustment to respond to patient needs is a significant advantage.


Asunto(s)
Cabestrillo Suburetral , Incontinencia Urinaria de Esfuerzo , Humanos , Masculino , Incontinencia Urinaria de Esfuerzo/cirugía , Incontinencia Urinaria de Esfuerzo/etiología , Resultado del Tratamiento , Cabestrillo Suburetral/efectos adversos , Diseño de Prótesis , Prostatectomía/efectos adversos
20.
Sci Rep ; 13(1): 21830, 2023 Dec 09.
Artículo en Inglés | MEDLINE | ID: mdl-38071265

RESUMEN

In this paper, a critical issue related to power management control in autonomous hybrid systems is presented. Specifically, challenges in optimizing the performance of energy sources and backup systems are proposed, especially under conditions of heavy loads or low renewable energy output. The problem lies in the need for an efficient control mechanism that can enhance power availability while protecting and extending the lifespan of the various power sources in the system. Furthermore, it is necessary to adapt the system's operations to variations in climatic conditions for sustained effectiveness. To address the identified problem. It is proposed the use of an intelligent power management control (IPMC) system employing fuzzy logic control (FLC). The IPMC is designed to optimize the performance of energy sources and backup systems. It aims to predict and adjust the system's operating processes based on variations in climatic conditions, providing a dynamic and adaptive control strategy. The integration of FLC is specifically emphasized for its effectiveness in balancing multiple power sources and ensuring a steady and secure operation of the system. The proposed IPMC with FLC offers several advantages over existing strategies. Firstly, it showcases enhanced power availability, particularly under challenging conditions such as heavy loads or low renewable energy output. Secondly, the system protects and extends the lifespan of the power sources, contributing to long-term sustainability. The dynamic adaptation to climatic variations adds a layer of resilience to the system, making it well-suited for diverse geographical and climatic conditions. The use of realistic data and simulations in MATLAB/Simulink, along with real-time findings from the RT-LAB simulator, indicates the reliability and practical applicability of the proposed IPMC strategy. Efficient load supply and preserved batteries further underscore the benefits of the fuzzy logic-based control strategy in achieving a well-balanced and secure system operation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...